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Liquid-Liquid Phase Separation in Multicomponent Polymer 
Systems. XI. Dilute and Concentrated Polymer Solutions in 
Equilibrium*l 
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ABSTRACT: A simple free enthalpy function is proposed for interpolating between the extremes of dilute and 
concentrated polymer solution behavior. This permits thermodynamic discussions of liquid-liquid equilibria in 
systems involving both concentrated and dilute phases. The function does ?ot require introduction of new arbi- 
trary parameters, and affords improved agreement with observed stability limits in practically binary polystyrene- 
cyclohexane systems. 

In almost all previous. discussions of liquid-liquid phase 
equilibria in multicomponent polymer systems, the de- 
pendence of the th.ermodynamic properties on chain 
length has been confined to the classical Flory-Huggins 
entropy terms.2a-b That is, in the expression for the free 
enthalpy (Gibbs free energy) of mixing of a quasibinary 
system (single solvent plus multicomponent homologous 
polymer) 

AGIRT = nl In 4, + E n ,  In 4, + gn14? (1) 

the dimensionless interaction function g is allowed to de- 
pend on temperature, pressure, and concentration, but 
not on the molecular weights of any of the species. In the 
above equation, nl,nl are the numbers of moles and r$& 
the volume fractions of solvent and polymer species i, re- 
spectively; 42 = ZL4, is the whole polymer volume frac- 
tion, and R T  has its usual meaning. 

A treatment of the above type has been quite successful 
in explaining the priincipal aspects of liquid-liquid equi- 
librium in polymer systems,2.3 but quantitative dis- 
crepancies have been noted. 

(a) Spinodals ( i .e . ,  the loci of metastability limits) cal- 
culated for polystyrene-cyclohexane systems with g inde- 
pendent of chain length, when compared with experimen- 
tal curves derived from extrapolation of light-scattering 
 measurement^,^ show significant differences which in- 
crease with decreasing molecular weight and with de- 
creasing polymer concentration.5 

(b) Direct measurements of distribution ratios for the 
partition of polymeric species between the two liquid 
phases of the polystyrene-cyclohexane system6 disagree 
with the predictions of eq 1 for a molecular weight inde- 
pendent g parameter. This equation leads to a distribu- 
tion coefficient of the fiorm 

in which single and double primes are used to denote the 
4,”/4!’ = exp(crm0 (2)  
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dilute and concentrated phases, respectively, mi is the 
ratio of molar volumes of polymer species i to solvent, and 
u is a function of temperature, pressure and concentration 
obtainable from eq 1. After introduction of the masses wi’ 
and wi” of the polymer species in the two phases, the 
above distribution law can be rewritten in the form 

(2’) 
where r is the ratio V’/V’’ of the total volumes of the 
phases. Breitenbach and Wolf found that although a plot 
of log ( w i ’ / W l ’ ’ )  us. mi indeed appears to be linear in the 
range of their data the apparent value of r as found from 
their intercept is of the order of only 10% of the directly 
measured value. 

End-group contributions offer a possible explanation for 
anomalies of the type described, and are predicted theo- 
retically for both enthalpy and entropy of m i ~ i n g . ~ a , ~ , ~  For 
example, Case, Gibbs, and Ghoshg found that special in- 
teractions involving terminal hydroxyl groups could ex- 
plain the observed distribution ratios of poly(propy1ene 
glycols) between water and organic solvents. For nonpolar 
systems, end groups can reasonably produce a contribu- 
tion of not much more than RT per mole to the free en- 
thalpy of mixing, corresponding to a contribution of about 
l / m n  in the parameter g, where m n  represents the num- 
ber-average value of mi. A term of about this magnitude, 
however, cannot be made to account for the aforemen- 
tioned spinodal data without an unreasonably large tem- 
perature coefficient; i .e. ,  the separate enthalpy and entro- 
py effects required are much too large.1° A modest end- 
group effect, however, must clearly be recognized by any 
general theory of polymer solutions, as for example in the 
treatment of n-alkane mixtures.11 

A second molecular weight dependent contribution to g 
is due to the well-known inherent nonuniformity of local 
polymer segment concentration at  high dilutions.12 It has 
long been recognized that an interaction function g indepen- 
dent of chain length cannot describe the thermodynamic 
properties of dilute polymer solutions; ’ e . g . ,  the second 
and third osmotic virial coefficients are known to depend 
on molecular weight. The calculations to be described 
below indicate that the accompanying effect on liquid-liq- 
uid phase equilibrium can be far from negligible when one 

In (w,’Iu~,’’) = -om, + In r 
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of the phases is dilute. To treat this problem, we require a 
tractable free-enthalpy function applicable continuously 
to solutions of all polymer concentrations from high to 
low. Although t h e  basic problem has been recognized and 
discussed in some detail by Fixman,l3J4 and by Ed- 
w a r d ~ , ~ ~  their results are not convenient in the sense de- 
sired; nor have we found any published alternatives. Here 
we offer a simple formula for interpolation between the 
dilute and concentrated regimes which can be crudely jus- 
tified in physical terms, which essentially invokes no new 
arbitrary parameters, and which gives an improved ac- 
count of spinodal behavior in the polystyrene-cyclohexane 
system. 

Interpolation between Dilute and Concentrated 
Polymer Solutions 

The two extremes of polymer solution behavior are well 
known. At sufficiently high concentrations, we have an 
enmeshed, intertwined and entangled assembly of chains. 
Under these conditions, an essentially uniform polymer 
segment concentration may be assumed throughout the 
solution, and the familiar theoretical treatments2838.12 lead 
to eq 1 with an interaction coefficient g that is indepen- 
dent of chain length save for the specific end-group effects 
noted above. At high dilutions, however, the macromole- 
cules are more or less isolated from each other, only occa- 
sionally interacting in small clusters. The natural theoret- 
ical development of this situation is a virial expansion of 
the osmotic pressure 

x/c2RT = ( l /Mn)  + A2c2 + A3c2? + ... (3) 
where c2 is the concentration in mass of whole polymer 
per unit volume, Mn is the number-average molecular 
weight, and the virial coefficientsA2, A B ,  . . . , correspond to 
the interactions of pairs, triplets, . . . , etc., of macromole- 
cules in the solvent medium. Both theoretical and experi- 
mental study of the virial coefficients shows that in gener- 
al they depend on the chain lengths of the molecules in- 
volved, in contradiction to the predictions based on a g 
independent of molecular weight. 

According to eq 1, the chemical potential of the solvent, 
referred to its value in the pure liquid, is given by 

A d R T  = In (1 - $J + (1 - m,,-1)$2 + x h L  ( 4 )  
where x = g - r$lag/ar$2. Expressing the concentration 
dependence of x in series form 

(3) x = x($2) = x1 + X2$? + ... 

-Api/RT = ($,/mn> + [(1/2) - x~I$?’ + 
and expanding the logarithmic term in eq 4, we have 

[(1/3) - ~ 2 1 4 2 ~  + ... (6) 
Thus, when g is independent of molecular weight, the var- 
ious coefficients in the above expansion are also indepen- 
dent of molecular weight, save for the leading infinite- 
dilution term. In highly dilute solutions, on the other 
hand, eq 3 corresponds to 

-ApJRT = ($2/mn) + (A2Vi/E:)$?’+ 

where VI is the molar volume of the solvent and 0 2  the 
specific volume of the polymer in solution. For a strictly 

(A3V1/U;)$2’ + ... ( 7 )  
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monodisperse polymer solute, the second virial coefficient 
is customarily written in the form 

(8) 
where XI, the coefficient appearing in eq 5 and 6, is inde- 
pendent of molecular weight and concentration but in 
general dependent on solvent, temperature, and pressure. 
The factor h(z)  is always less than unity above the 8 tem- 
perature, and is theoretically relatedl6-ls to the average 
number of nearest-neighbor segment-segment contacts 
between the two polymer chains of a binary cluster. Its 
argument z (see below) is proportional to rn1I2, and thus 
in dilute solution the coefficient g defined by eq 1 must 
necessarily be a function of chain length. 

We now propose to express g for a polymer solution of 
arbitrary concentration as a simple linear combination of 
the two extreme cases described above 

with a suitable choice for the fraction P. The spirit of this 
maneuver is similar to that of the approximate “signifi- 
cant structure theory” of liquids due to Eyring and Ree;lg 
they describe a liquid as possessing both solid-like and 
gas-like degrees of freedom. We similarly regard a polymer 
solution of arbitrary concentration as an appropriate hy- 
brid of the highly non-uniform dilute-solution limit and 
the much more regular concentrated-solution state. In this 
physical context, it  is natural to take the fraction P as 
equal to the probability that a small volume element in 
the solution is not pervaded by any polymer segments. 
This quantity can be readily estimated.l2 

Consider a solution of total volume V, containing Nl 
polymer molecules of species i, etc. Let the volume of so- 
lution effectively occupied by a randomly coiling molecule 
of this species be u1.  To a rough but perhaps adequate ap- 
proximation, we take 

L‘, = 4 x a S 1 3 / 3  (10) 

where S12 is the mean-square polar radius of gyration of 
the coil in its unperturbed state, and a is a geometric fac- 
tor, of the order of unity. This factor takes account of the 
various uncertainties associated with the concept of the 
effective volume u l ;  these include deviations from spheri- 
cal shape,20 interstitial volume among the coils, and oth- 
ers. At high dilution in good solvents the macromolecules 
are of course expanded by excluded-volume effects, and in 
sufficiently poor solvents they must be somewhat con- 
tracted. However, as the concentration is increased, mu- 
tual interaction among the coils forces their dimensions 
toward the unperturbed values,12J4 and so we are content 
to use the latter in our obviously crude model. Now if the 
chains in the solution were completely independent of 
each other, the probability that no polymer segment from 
any dissolved macromolecule is found within a chosen vol- 
ume element in the solution would be 

where the second equality holds for the limit of large Nl 
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and V. This result may also be written as 

P = exp(-Ch,$,) = expl(-ho&$,m,1’2) = exp(-h,&) 
(12) 

ho = h,m,-1/2 = 4 i ~ a N ~ b ~ V ~ ~ / ~ / 3 i ~ ~ / ~  (13) 
In the last expression, we have used the parameter b = 
S,M1-1/2,  and N A  is Avogadro’s number. The number 
l / X w  corresponds to the volume fraction of solute at which 
the sum of the coil ,volumes as estimated by eq 10 equals 
the volume V of the entire solution. Just  this concentra- 
tion has very often been taken as a sort of watershed be- 
tween the extremes of dilute and concentrated solution 
behavior described earlier. The “transition” between these 
two extremes is, according to eq 9 and 12, quite gradual, 
and by no means as sharp as has sometimes (erroneously, 
we think) been supposed. I t  is also perhaps interesting to 
remark that l / X 1  corresponds to the concentration a t  
which the root-mean-square fluctuation of the solute con- 
centration in a volume of size u1 just matches the mean 
concentration itself. 

At this point we make a further simplification for prac- 
tical purposes. If eq 9 is rewritten as 

where 

g = gconc + Pkci,, - gconc) ( 9’) 

it is clear that the last term will make its greatest contri- 
bution at  very low concentrations and will be damped out 
exponentially by the factor P as the concentration is in- 
creased. We therefore replace the coefficient of P in eq 9’ 
by its limiting value, writing 

Putting eq 9” and 12 into eq 1, we may now write the free 
enthalpy of mixing as 

AG/N,RT = $1 In @1 + C m , - l 4 ,  In + r (14) 
I 

where N$ = nl  + Zlnlml and 

It  should be noted that these equations define a free en- 
thalpy function into which no new adjustable parameters 
have been introduced to cope specifically with the transi- 
tion from dilute-solution to concentrated-solution behavior, 
The term gCon, can be evaluated from measurements of 
various kinds on concentrated solutions, and (as shown 
below) the coefficient g* in the perturbation term is sim- 
ply related to the second virial coefficient A2 which may 
be evaluated from osmotic or light-scattering measure- 
ments on very dilute solutions. Further, X w  is also pre- 
dictable from independently measurable quantities, save 
for a possible small aldjustment in the factor a. The func- 
tion bears no evident relation to those appearing in the 
more fundamental theoretical treatments of Fixman13J4 
or Edwards,15 but essentially the same physical variables 
are involved. 

The quantity g*, as  stated above, can in principle be 
obtained from the osimotic second virial coefficient. In the 
case of a multicompclnent polymer, however, the detail of 
information required places great strain on existing data 
since the dependence of A2 on the entire molecular weight 
distribution of the solute is required. In this paper we 

shall be content to give explicit results only for a strictly 
binary system. For that case, Xw reduces to Xorn1’2. Since 
g* is defined to be independent of 4 2 ,  eq 14 and 15 give 

A2V1/iZ2 = (1/2)[1 + (d21’/8$*2)m2=ol = 
(1/2) - x1 - (1 4- hOm1/*)g* (16) 

where we have used the series representation of gconc 
from eq 4 and 5.  Direct comparison of eq 16 with eq 8 
yields 

(1 + Xom1/*)g* = [(1/2) - xll[l  - h k ) ]  (17) 

In applications to a given binary system, we have the 
choice of evaluating g* either (a) by eq 16 directly from 
measured values of A2 or (b) by eq 17 from one of the sev- 
eral available theoretical expressions for the function h(z) .  
The x1 needed in both cases is based on data for concen- 
trated solutions. The former route needs no further com- 
ment. As to the latter, we may remark that a t  tempera- 
tures not too far from T = 8, theory give@-18 

(18) h ( z )  = 1 - 2.8652 + ... 
and the variable z is defined by 

z = (C2/4~b2)3 *(rn/Vl)l’*(1 - 2x1)/NA (19) 
If these relations are used in eq 17, the result is 

(1 + Xom1/2)g* = 

5.73(m/Vl?1’2(~ , /4~b*~~*[( l /2)  - x112/NA (20) 

which indicates that  g* is positive both above and below 
the e temperature, vanishing quadratically at  T = 0. 

According to eq 14 and 15, the third virial coefficient is 
given by 

Xom1/2(1 + 2Xom1/2)g* (21) 

This expression does not bear comparison with any exist- 
ing theoretical relationl7 for AS,  but it agrees with theory 
insofar as the contribution from binary segment-segment 
interactions, here proportional to  g*, vanishes at  T = 0.  

Binary Stability Limit and Miscibility Gap 

In a strictly binary polymer solution, the previous re- 

Z = AG/N,RT = 

sults reduce to 

In @I + m-ldz In $2 + ~ I # J ~ $ ~  

(22) 
where 

g = g,,,,, + [(1/2) - xJ1 - h(z)l(l + A)-’ exp(-X$A 

h = horn’/* (23) 
We now apply this expression to the calculation of some 
spinodal and binodal curves for the binary polystyrene- 
cyclohexane system. In an earlier paper it was shown5 
that for sufficiently concentrated solutions the experimen- 
tal data for this system are well represented by the func- 
tion 

gc0,c  = + P(1 - yd4-l 
(24) 

P = Po + PIT-’ 

with a = -0.1597, y = 0.2365, PO = 0.4987, and PI = 
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111.74K. From standard literature sources21 we have 02 = 
0.925 cm3 g-l, VI = 108 cm3 mol-1 and b2 = 7.6 x 
cm2 mol g-l, so that from eq 13 and 19 we find XO = 
0.57a, and 

z = 0.305[(1/2) - x J ~ ” ~  (25) 

According to eq 24, = a + p(1 - y) .  For the function 
h(z)  we have a choice of approximate theoretical expres- 
sionsl’ from which we use the familiar ones of Flory, 
Krigbaum, and Orofino (FKO (m)),  Stockmayer (S), Ku- 
rata and Yamakawa (KY), and Casassa and Markovitz 
(CM) 

FKO(m) h ( z )  = (1/5.732) In (1 + 5.732) (264  
S h(z)  = 1/(1 + 2.8652) (26b) 

K Y  h(z)  = 1 - (1 + 3 . 9 0 3 ~ ) - ~ ~ ~ ~ ~ / 1 . 8 2 8 ~  (26c) 

CM h(z) = [I - exp(-5.73~)1/5.73~ (26d) 

All these forms agree with eq 18 in the neighborhood of 
the 8 temperature, and all give more or less adequate rep- 
resentations of second virial coefficients for temperatures 
above 0.  The first three expressions all lead to infinite 
values of h ( z )  a t  some temperature below 8 ,  but this ca- 
tastrophe is too far from the range of existing data to 
cause serious inconvenience. Alternatively, as mentioned 
earlier, we might avoid use of an explicit h(z)  function 
and instead resort to direct extrapolation of observed sec- 
ond virial coefficients for substitution in eq 16. For this 
purpose, the simple empirical expression presented by Ue- 
berreiter and Sotobayashi22 is convenient. 

The stability limit or spinodal is defined by the condi- 
tion 

iawa$22)T = o (27 )  

which, from eq 22, 23, and 24 yields 

(1/&) + (l/rn42) = 2a + 2P(l - y)(l - 7 W 3  + 
[(1/2) - a - P(1 - 7)][1 - h(z)l(l + X)-1 x 

( 2  + 2X - 4x42 - X24142) exp(-Xh) (28) 

This expression displays the concentrated-solution terms 
reported earlier,5 but is now amended for dilute-solution 
effects by addition of the last term. This term is attenuat- 
ed by its exponential factor, becoming insignificant a t  suf- 
ficiently high concentrations. 

The loci of the stable two-phase region are specified by 
the equilibrium conditions 

(29) 
A p i  = Ap2“ 

where as before the single prime is for the more dilute 
phase. From eq 22-24 we have 

Ap,/RT = In q51 + (1 - r n - l ) &  + <l&2 (30) 

rn-‘Ay21RT = m-l In c$* - (1 - m-94, + h4,’ (31) 

Ap,’ = Api“ 

where 

= g - 4,ag/a@, = CY + ~ ( 1  - 7x1 - 7~ + 

(21) 

(22) 

J .  Brandrup and E H. Immergut, 
terscience, New York. N.  Y., 1966. 
K.  Ueberreiter and H. Sotobayashi, 
( 1964). 

Ed., “Polymer Handbook,” In- 

J.  Polym. Sei., Part A ,  2, 1257 

Spinodal curves calculated for various h(z)  functions, 
by the procedure described in the Appendix, are shown in 
Figure 1, together with available experimental data. It is 
seen that the extended free enthalpy function gives a bet- 
ter description of the spinodal data, especially at  lower 
molecular weights, than a standard function which omits 
the dilute-solution term. The choice of h(z)  makes some 
difference. The CM expression appears to underestimate 
the effect, the S and KY expressions are quite useful, but 
the FKO(m) function seems to afford the best fit. If the 
alternative treatment based on eq 16 and the Ueberreiter- 
SotobayashiZ2 parameters is used, then the calculated spi- 
nodals (not shown in Figure 1) almost coincide with those 
for the CM function. 

The value of XO is of some importance, as indicated by 
Figure 2. With the KY expression for h ( z )  the best fit is 
attained with A0 (1/2).  With the FKO(m) function this 
figure could be somewhat higher, though still well below 
A0 = 1. These results are in comforting accord with eq 13 
for a near unity, and thus support the assertion that the 
added dilute-solution perturbation term does not involve 
new adjustable parameters. Addition of the new term pro- 
duces changes of the correct sign and order of magnitude 
in the spinodal which, involving the second derivative of 
the free enthalpy, provides a sensitive test for its validity. 

Miscibility gaps (binodals) calculated as described in 
the Appendix are displayed in Figure 3 for m = 800 and 
the CM function for h(z) .  These results show that a value 
of ho much in excess of unity would give negligible effects 
on the boundary of the two-phase region, while a figure 
much less than yz would produce an unpalatably large 
change on the high concentration side of the diagram. 

Discussion 
Over the concentration range so far studied for the poly- 

styrene-cyclohexane system, the dilute-solution effect ap- 
pears to become negligible as Mw increases beyond about 
5 X 105. At higher molecular weights, dilute-solution ef- 
fects would be observed only at  lower concentrations. This 
is because the “yardstick” X in the exponential damping 
function of eq 12 does not depend on molecular weight in 
the same way as, for instance, the maximum point of the 
spinodal curve. 

By virtue of eq 13, h also depends on the unperturbed 
dimensions of the polymer. Thus, if all the other parame- 
ters remain fixed the dilute-solution effect would be less 
visible for polymers with larger unperturbed dimensions 
than polystyrene. However, as is seen in eq 19, the unper- 
turbed dimensions also affect the parameter 2, and it is 
therefore not possible to make any detailed statement 
without knowledge of the temperature and concentration 
dependence of g,,,, . That the unperturbed dimensions 
should exert some effect may be qualitatively argued from 
the circumstance that the “overlap concentration” l / A w  
does depend on the unperturbed dimensions whereas the 
critical concentration, according to present theories of 
concentrated polymer solutions, does not. In general, the 
magnitudes found for the polystyrene-cyclohexane system 
are thought to be typical, but it would be very valuable to 
have data for a t  least one rather different polymer-solvent 
system. 

Extension of the present treatment to a general quasibi- 
nary system is perfectly feasible in principle, but for its 
practical implementation a precise specification of the de- 
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Figure 1. Spinodals for three samples of narrow-distribution 
polystyrene in cyclohexane. Weight-average molecular weights 
Mw are indicated. Experimental data by light scattering: filled 
circles, S ~ h o l t e ; ~  open squares, Gordon et a1.23 The experimental 
critical points (dotted circles) are from Koningsveld, Kleintjens, 
and S h ~ l t z . ~ ~  Calculated curves, for A0 = (1/2), are from eq 28 
with the various h(z)  functions of eq 26. The curve marked 
“conc” corresponds to h ~ z )  = 1; i . e . ,  to complete omission of the 
dilute-solution effect. 

pendence of A2 on molecular weight and molecular weight 
distribution is requirled. Present experimental and theo- 
retical knowledge of this dependence is quite limited. Ue- 
berreiter and Sotobayashi,22 for example, suggest that  A2 
simply depends linearly on rnn- l l2  or mw-1’2 but these 
forms cannot be correct for arbitrary chain lengths or dis- 
tributions, even though they appear to offer a satisfactory 
correlation of many lexisting experimental data. A more 
fundamental theoretical attack on the problem is unfortu- 
nately still a t  a relatively early stage of de~elopment.~79~8 

We are thus a t  present not in a strong position to dis- 
cuss critically the distribution-ratio problem raised by the 
observations of Breitienbach and Wolf.6 It  is difficult to 
separate effects due to approximations in our interpola- 
tion function from those due to uncertainties in the basic 
thermodynamic treatinent of dilute multicomponent poly- 
mer solutions. An account of our attempts to deal with 
these difficulties is deferred to a later paper. 

A brief comment must also be offered on the effects of 
long-range correlations in the critical region.25 It  is well 
known that all treatments based on a continuously differ- 
entiable free enthalpy function lead to a parabolic coexis- 
tence curve in the immediate vicinity of the critical point, 
in contradiction to both experiment and modern theory, 

(23) K. W.  Derham, J. Goldsbrough, and M.  Gordon, Pure Appl Chem., 
in press; J. Goldsbrough, Sci. Progr., 60,281 (1972). 

(24) R. Koningsveld, L. A. Kleintjens, and A .  R. Shultz, J. Polym. Sa . ,  
ParfA-2, 8,1261 (1970). 

(25) See, for example, H. E Stanley, “Phase Transitions and Critical Phe- 
nomena,’’ Oxford, Univ Press, Oxford, 1971. 
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Figure 2. Spinodals calculated for the same three samples as in 
Figure 1, with the KY expression for h(z) and various values of 
XO. Full curve, XO = (1/2); dashed curve, XO = 1; dash-dot curve, 
A0 - = (conc). 

which show the true curve to be flatter. Chu and his co- 
workerP  have offered evidence of such nonclassical be- 
havior in the polystyrene-cyclohexane system, and it is 
possible that the slightly flatter appearance of the experi- 
mental spinodals of Figures 1 and 2 as compared to the 
calculated curves can be attributed to this cause. We be- 
lieve, however, that  the temperature and concentration 
range of the nonclassical region is much narrower for poly- 
meric systems than for solutions of small molecules, and 
that such effects cannot be large enough to account for 
the entire “dilute-solution” contribution that we have 
treated. We hope to discuss this question more extensively 
elsewhere. 

Finally, it  is interesting historically to recall that Ben- 
edict, Webb and Rubin27 long ago found that insertion of 
a Gaussian function of density into their well-known 
equation of state afforded an economical representation of 
vapor-liquid equilibrium in hydrocarbons and their 
mixtures, in superficial resemblance to the present con- 
coction for polymer solutions. 
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Appendix 
Because z is a function of P(T) (eq 25; = LY + (1 - 

(26) N. Kuwahara, D. V. Fenby, M. Tamsky, and B. Chu, J .  Chern. Phys., 

(27) M. Benedict, G.  B. Webb, and L. C .  Rubin, J. Chem. Phys., 8, 344 
55, 1140 (1971). 

( 1940). 
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Figure 3. Calculated miscibility gaps and spinodals in a strictly binary polystyrene-cyclohexane system with m = 800, the CM expres- 
sion for h(z) ,  and various indicated values of XO. Outer (heavy) curves are binodals; inner (light) curves are spinodals; filled circles are 
critical points (only two indicated). 

r)@), the spinodal expression (28) is implicitly defined in 
P(T). Its value, 06, a t  some fixed $2 (= 1 - $1) along the 
binary spinodal is nevertheless easily found by rewriting 
eq 28; thus 

P = F i / F z  (All  
where 
Fi (1/4J + (l/m@J - ~ C U  - [ ( l / Z )  - CY] x 

(1 - h)( l  + X)-’F, exp(-X&) 

(1 - h)(l + X)-’F3 exp(-X@,)] 

h = h(z )  
On setting h(z)  = 1 in eq A1 all dilute solution terms van- 
ish and we obtain the exact solution fl(T)conc corre- 
spopding to the usual concentrated theory spinodal. This 
affords a good first approximation to @$ from which z and 
hence h(z )  may be calculated by means of eq 25 and 26, 

F2 5 (1 - y)[2(1 - T&)-~ - 

F3 = 2 + 2X - 4x4, + X24,4, 

respectively. Substituting for h(z)  in eq A1 obtains an im- 
proved approximation to b4. This recursive procedure 
may be continued to yield successively closer approxima- 
tions to and the spinodal temperature (corresponding 
to the value 42)  computed therefrom with eq 24; uiz. T = 
f l 1 / ( @ $  - P O ) .  In practice only four or five iterations are 
required to determine the spinodal temperature to within 
0.001”. 

To calculate binodals; consider the chemical potential 
of each component in the dilute (’1 and concentrated (”) 
phases. From eq 30 and 31 it is convenient to define the 
functions 

f l  

f 2  

Apl” - Ap,‘ = In (41”/41’) + 
Ap2“ - A p ;  = m-1 In (&”/&’) - 
(1 - m-’)(&” - $4) + (61‘‘q52’12 - 61’42’2) (A2) 

(1 - m-’)(”’’ - 41’) + (62/’41’’2 - 62/41”) (A3) 

For each fixed m and $2” (=  1 - $I”), we seek the corre- 
sponding values of T and $2’ (= 1 - $1’) which complete 
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the definition of two points at the ends of a tie line in a 

equilibrium conditions, fi(dz’,T) = 0 and fz(dz’,T) = 0 

4 2 , 1 + 1 ’  = 42 I’ - f*(Tl+l,4* Lr)/f**(TL+b4zLr) 
where binodal. To this end we regard f1 = f1(42‘,T) and f z  E 

fz(4z’,T) and note that the solution is found when the 

(eq 29), are met. 
Combining Ne&opl-Raphson and Gauss-Seidel meth- 

ods; if T1 and ~ $ 2 , ~ ’  represent approximations to T and c$~’, 

then closer approximations TL+l  and $ ~ , ~ + 1  are given by 

Ti+, = T ,  - fi(TLL42 i’)/fi’(TLj4* [’) 

f l T  = afl /aT f z m  = afJa4; 

From the rather arbitrary starting values, To = 300, and 
42.0’ = 0.005, the values of T and 42’ were determined to 
sufficient accuracy (0.002 in T and 0.001 in &’) a t  step i 
= 6 in this recursive routine. 

All of the calculations above were performed on a pro- 
grammed Hewlett-Packard desk calculator, Model 9810A. and  

Entanglement Networks of 1,2-Polybutadiene Cross-Linked in 
States of Strain. I. Cross-Linking a t  0” 
Ole Kramer, Rick L. Carpenter, Violeta Ty, and John D. Ferry* 
Department of Chemistry and Rheology Research Center, Uniuersity of Wisconsin. 
Madison, Wisconsin 53706. Receiued October I ,  1973 

ABSTRACT: Linear 1,2-polybutadiene is cross-linked at 0” (12” above Tg) by y-irradiation while strained in sim- 
ple extension, with extension ratios (ho)  from 1.2 to 2.0. After release, the sample retracts to a state of ease (A,) at 
room temperature. From XO, A,, and Young’s modulus in the state of ease ( E s ) ,  the molar concentrations of net- 
work strands terminated by cross-links ( u x )  and by trapped entanglements (YN) are calculated by composite net- 
work theories of Flory and others. With increasing irradiation time t ,  u x  (corrected for free ends) is directly pro- 
portional to t and Y N  attains a constant value. With increasing XO, u X  is constant and U N  diminishes somewhat. 
Extrapolated to XO = 1, Y N  is somewhat smaller (1.2 X mol ~ m - ~ )  than the concentration of entanglement 
strands estimated from viscoelastic measurements on uncross-linked polymer in the plateau zone ( u e  = 2.5 X 
10-4). Young’s modulus was also calculated indirectly from equilibrium swelling in n-heptane. The swelling is 
slightly anisotropic, being larger in the direction of extension. 

In certain ranges of frequency (or time) and tempera- 
ture, the viscoelastic properties of amorphous polymers of 
high molecular weight resemble those of cross-linked poly- 
mers, as though a temporary network existed, usually at-  
tributed to coupling by entanglements.1 The concentra- 
tion of network strands terminated by entanglements has 
been estimated from viscoelastic measurements in the 
plateau zone,2 but these are not measurements at  elastic 
equilibrium. To measure the effect of entanglements a t  
equilibrium, they must be trapped between chemical 
cross-links to prevent eventual disentanglement. Concen- 
trations of trapped entanglements have been estimated in 
several ways,3-6 involving additive contributions from 
strands terminated by chemical cross-links and by entan- 
glements. 

The present work treats systems in which the elastic 
effects of strands terminated by chemical cross-links and 
by trapped entanglements, instead of being additive, are 
in opposition. Their concentrations can in principle be de- 
termined without any assumptions of stoichiometric cross- 
linking, and the effectiveness of entanglements as a func- 
tion of strain and otlner variables can be investigated. A 
preliminary report of such experiments has appeared else- 
where.? 

(1) J. D. Ferry, Proc. 5thIni’ern. Congr. Rheol., 1,3 (1969). 
(2) J .  D. Ferry, “Viscoelastic Properties of Polymers,” 2nd ed, Wiley, New 

York, N. Y., 1970, p 406. 
(3) C. G. Moore and W. F. Watson, J.  Polym. Sci., 19,237 (1956). 
(4) B. Meissner, I. Klier, aind S. Kucharik, J.  Polym. Sci., Part C, 16, 793 

( 1967). 
( 5 )  N. Steiner, BAM(Bundesanst. Materialprue.) Ber., 5,25 (1971). 
(6) N. R. Langley and K.  E. Polmanteer. Poltm. Prepr., Amer. Chem. 

(7) 0. Kramer, V .  Ty, and J .  D. Ferry, Proc. Nat. Acad. Sci. U. S..  69, 
Soc., Diu. Polym. Chem., 13,235 (1972). 

2216 (1972). 

Theory 
When a rubber containing u 1  (mol cm-3) of elastically 

effective strands between cross-links which were intro- 
duced in the isotropic state is subjected to a substantial 
deformation and then a new set of cross-links is intro- 
duced to give an additional u2 (mol cm-3) of elastically 
effective strands, the equilibrium elastic properties can be 
described as the sum of two independent networks. The 
most general treatment of such composite networks has 
been presented by Flory,8 who gave the following expres- 
sion for the elastic free energy AFel of the composite net- 
work, assuming Gaussian chains 

AF,I/RT = (v1/2)(A,2 + A,’ + A,’ - 3) + ( ~ 2 1 2 )  x 

where A x ,  X y ,  and Xz represent the extension ratios rela- 
tive to the initial isotropic state; Xx;2, Ay;2, and Xz;2 rep- 
resent the extension ratios relative to the state in which 
the second set of cross-linkages was introduced; V is the 
actual volume; Vo is a reference volume. After release of 
the stress, the sample assumes a state of ease in which the 
free energy is at a minimum and the force due to the net- 
work introduced in the isotropic state is equal to and op- 
poses the force due to the network introduced in the 
strained state. From the strain in the state of ease the rel- 
ative concentrations of elastically effective strands intro- 
duced in the strained and isotropic states, Le . ,  U Z / U ~ ,  can 
be calculated. The ideal composite network is isotropic in 
its elastic properties, taken relative to the state of ease. 

If an uncross-linked polymer of high molecular weight 

(8 )  P.  J. Flory, Trans. Farada? Soc., 56,722 (1960) 


