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Liquid-Liquid Phase Separation in Multicomponent Polymer
Systems. XI. Dilute and Concentrated Polymer Solutions in

Equilibrium*1
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ABSTRACT: A simple free enthalpy function is proposed for interpolating between the extremes of dilute and
concentrated polymer solution behavior. This permits thermodynamic discussions of liquid-liquid equilibria in
systems involving both concentrated and dilute phases. The function does not require introduction of new arbi-
trary parameters, and affords improved agreement with observed stability limits in practically binary polystyrene-

cyclohexane systems.

In almost all previous discussions of liquid-liquid phase
equilibria in multicomponent polymer systems, the de-
pendence of the thermodynamic properties on chain
length has been confined to the classical Flory-Huggins
entropy terms.22:® That is, in the expression for the free
enthalpy (Gibbs free energy) of mixing of a quasibinary
system (single solvent plus multicomponent homologous
polymer)

AG/RT = n, ln ¢, + Zn, In ¢, + gni¢, (1)

the dimensionless interaction function g is allowed to de-
pend on temperature, pressure, and concentration, but
not on the molecular weights of any of the species. In the
above equation, nj,n: are the numbers of moles and ¢1,¢:
the volume fractions of solvent and polymer species i, re-
spectively; ¢2 = Z4; is the whole polymer volume frac-
tion, and RT has its usual meaning.

A treatment of the above type has been quite successful
in explaining the principal aspects of liquid-liquid equi-
librium in polymer systems,23 but quantitative dis-
crepancies have been noted.

(a) Spinodals (i.e., the loci of metastability limits) cal-
culated for polystyrene-cyclohexane systems with g inde-
pendent of chain length, when compared with experimen-
tal curves derived from extrapolation of light-scattering
measurements,* show significant differences which in-
crease with decreasing molecular weight and with de-
creasing polymer concentration.5

(b) Direct measurements of distribution ratios for the
partition of polymeric species between the two liquid
phases of the polystyrene-cyclohexane system® disagree
with the predictions of eq 1 for a molecular weight inde-
pendent g parameter. This equation leads to a distribu-
tion coefficient of the form

¢ /¢ = explom,) (2)
in which single and double primes are used to denote the
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dilute and concentrated phases, respectively, m; is the
ratio of molar volumes of polymer species i to solvent, and
o is a function of temperature, pressure and concentration
obtainable from eq 1. After introduction of the masses w;’
and w;"’ of the polymer species in the two phases, the
above distribution law can be rewritten in the form

In (w//w’) = —om, + Inr (2)

where r is the ratio V//V’’ of the total volumes of the
phases. Breitenbach and Wolf found that although a plot
of log (wi’/w’’) vs. m; indeed appears to be linear in the
range of their data the apparent value of r as found from
their intercept is of the order of only 10% of the directly
measured value.

End-group contributions offer a possible explanation for
anomalies of the type described, and are predicted theo-
retically for both enthalpy and entropy of mixing.22.7.8 For
example, Case, Gibbs, and Ghosh® found that special in-
teractions involving terminal hydroxyl groups could ex-
plain the observed distribution ratios of poly(propylene
glycols) between water and organic solvents. For nonpolar
systems, end groups can reasonably produce a contribu-
tion of not much more than RT per mole to the free en-
thalpy of mixing, corresponding to a contribution of about
1/mn in the parameter g, where mn represents the num-
ber-average value of m;. A term of about this magnitude,
however, cannot be made to account for the aforemen-
tioned spinodal data without an unreasonably large tem-
perature coefficient; i.e., the separate enthalpy and entro-
py effects required are much too large.l® A modest end-
group effect, however, must clearly be recognized by any
general theory of polymer solutions, as for example in the
treatment of n-alkane mixtures.11

A second molecular weight dependent contribution to g
is due to the well-known inherent nonuniformity of local
polymer segment concentration at high dilutions.12 It has
long been recognized that an interaction function g indepen-
dent of chain length cannot describe the thermodynamic
properties of dilute polymer solutions; e.g., the second
and third osmotic virial coefficients are known to depend
on molecular weight. The calculations to be described
below indicate that the accompanying effect on liquid-lig-
uid phase equilibrium can be far from negligible when one

(7) M. L. Huggins, Ann. N. Y. Acad. Sci., 43, 1(1942).
(8) E. A. Guggenheim, “Mixtures,” Clarendon Press, Oxford, 1952.
(9) L. C. Case, D. A. Gibbs and S. B, Ghosh, Offic. Dig. Fed. Soc. Paint
Technol., 35,771 (1963); Chem. Abstr., 59, 133995 (1963).
(10) J. W. Kennedy, M. Gordon, and R. Koningsveld, J. Polym. Sci., Part
C, 39,43 (1972).
(11) P. J. Flory, R. A. Orwoll, and A. Vrij, J. Amer. Chem. Soc., 86, 3507
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(12) P. J. Flory, “Principles of Polymer Chemistry,” Cornell University
Press, Ithaca, N. Y., 1953, Chapters 12-13.
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of the phases is dilute. To treat this problem, we require a
tractable free-enthalpy function applicable continuously
to solutions of all polymer concentrations from high to
low. Although the-basic problem has been recognized and
discussed in some detail by Fixman,13:1¢ and by Ed-
wards,15 their results are not convenient in the sense de-
sired; nor have we found any published aiternatives. Here
we offer a simple formula for interpolation between the
dilute and concentrated regimes which can be crudely jus-
tified in physical terms, which essentially invokes no new
arbitrary parameters, and which gives an improved ac-
count of spinodal behavior in the polystyrene-cyclohexane
system.

Interpolation between Dilute and Concentrated
Polymer Solutions

The two extremes of polymer solution behavior are well
known. At sufficiently high concentrations, we have an
enmeshed, intertwined and entangled assembly of chains.
Under these conditions, an essentially uniform polymer
segment concentration may be assumed throughout the
solution, and the familiar theoretical treatments?2.8.12 Jead
to eq 1 with an interaction coefficient g that is indepen-
"dent of chain length save for the specific end-group effects
noted above. At high dilutions, however, the macromole-
cules are more or less isolated from each other, only occa-
sionally interacting in small clusters. The natural theoret-
ical development of this situation is a virial expansion of
the osmotic pressure

T/CQRT = (1/Mn) + AgC: + 14;;022 + (3

where cs is the concentration in mass of whole polymer
per unit volume, M, is the number-average molecular
weight, and the virial coefficients As, As, .. ., correspond to
the interactions of pairs, triplets, ..., etc., of macromole-
cules in the solvent medium. Both theoretical and experi-
mental study of the virial coefficients shows that in gener-
al they depend on the chain lengths of the molecules in-
volved, in contradiction to the predictions based on a g
independent of molecular weight.

According to eq 1, the chemical potential of the solvent,
referred to its value in the pure liquid, is given by

Aw/RT =In (1 = ¢o) + (1 = m, )¢, + Xo? (&)

where x = g — ¢10g/062. Expressing the concentration
dependence of x in series form

X = X(¢2) = x; + Xo2 + ... (%)
and expanding the logarithmic term in eq 4, we have

-AlJl/RT = (¢s/mn) + [(1/2) = xi)é* +
[A/3) = x2)¢2* + ... (6)

Thus, when g is independent of molecular weight, the var-
ious coefficients in the above expansion are also indepen-
dent of molecular weight, save for the leading infinite-
dilution term. In highly dilute solutions, on the other
hand, eq 3 corresponds to

—A,UI/RT = (¢2/mn) + (A2V1/522)¢2'7+

(&“131/'1/1—)23)(1&3 + .. (7)
where Vi is the molar volume of the solvent and o2 the
specific volume of the polymer in solution. For a strictly

(13) M. Fixman, J. Chem. Phys. 33, 370 (1960).
(14) M. Fixman and J. M. Peterson, J. Amer. Chem. Soc., 86, 3524 (1964).
(15) S.F.Edwards, Proc. Phys. Soc. London, 88, 265 (1966).
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monodisperse polymer solute, the second virial coefficient
is customarily written in the form

AV /52 = [(1/2) = xIh(z) ®)

where x3, the coefficient appearing in eq 5 and 6, is inde-
pendent of molecular weight and concentration but in
general dependent on solvent, temperature, and pressure.
The factor h(z) is always less than unity above the § tem-
perature, and is theoretically related16-18 to the average
number of nearest-neighbor segment-segment contacts
between the two polymer chains of a binary cluster. Its
argument z (see below) is proportional to m1/2, and thus
in dilute solution the coefficient ¢ defined by eq 1 must
necessarily be a function of chain length.

We now propose to express g for a polymer solution of
arbitrary concentration as a simple linear combination of
the two extreme cases described above

g = gdi]P + gconc(l - P) (9)

with a suitable choice for the fraction P. The spirit of this
maneuver is similar to that of the approximate ‘signifi-
cant structure theory” of liquids due to Eyring and Ree;!?
they describe a liquid as possessing both solid-like and
gas-like degrees of freedom. We similarly regard a polymer
solution of arbitrary concentration as an appropriate hy-
brid of the highly non-uniform dilute-solution limit and
the much more regular concentrated-solution state. In this
physical context, it is natural to take the fraction P as
equal to the probability that a small volume element in
the solution is not pervaded by any polymer segments.
This quantity can be readily estimated.12

Consider a solution of total volume V, containing N;
polymer molecules of species i, etc. Let the volume of so-
lution effectively occupied by a randomly coiling molecule
of this species be v;. To a rough but perhaps adequate ap-
proximation, we take

v, = 47aS3/3 (10)

where S;2 is the mean-square polar radius of gyration of
the coil in its unperturbed state, and a is a geometric fac-
tor, of the order of unity. This factor takes account of the
various uncertainties associated with the concept of the
effective volume v;; these include deviations from spheri-
cal shape,20 interstitial volume among the coils, and oth-
ers. At high dilution in good solvents the macromolecules
are of course expanded by excluded-volume effects, and in
sufficiently poor solvents they must be somewhat con-
tracted. However, as the concentration is increased, mu-
tual interaction among the coils forces their dimensions
toward the unperturbed values,12-1¢ and so we are content
to use the latter in our obviously crude model. Now if the
chains in the solution were completely independent of
each other, the probability that no polymer segment from
any dissolved macromolecule is found within a chosen vol-
ume element in the solution would be

P = H[l - (Ux/V)]N’ = eXp("ZNiUx/V) (11)

where the second equality holds for the limit of large N;

(16) B.H. Zimm, J. Chem. Phys., 14, 164 (1946).

(17) H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper &
Row, New York, N. Y., 1971.

(18) E.F. Casassa, Pure Appl. Chem., 31, 151 (1972).

(19) H. Eyring and T. Ree, Proc. Nat. Acad. Sci. U. S., 47, 526 (1961); H.
Eyring and R. Marchi, J. Chem. Educ., 40, 562 (1963).

(20) K. Solc,J. Chem. Phys. 55, 335 (1971).
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and V. This result may also be written as

P = exp(=2\;p.) = exp{—=NZd:m'?) = exp(—Nuts)
(12)

where
Ao = Aim;~V? = 4waN \b*VV2/30,32 (13)

In the last expression, we have used the parameter b =
SiM;-1/2, and N4 is Avogadro’s number. The number
1/Aw corresponds to the volume fraction of solute at which
the sum of the coil volumes as estimated by eq 10 equals
the volume V of the entire solution. Just this concentra-
‘tion has very often been taken as a sort of watershed be-
tween the extremes of dilute and concentrated solution
behavior described earlier. The ‘““transition” between these
two extremes is, according to eq 9 and 12, quite gradual,
and by no means as sharp as has sometimes (erroneously,
we think) been supposed. It is also perhaps interesting to
remark that 1/XA; corresponds to the concentration at
which the root-mean-square fluctuation of the solute con-
centration in a volume of size v; just matches the mean
concentration itself.

At this point we make a further simplification for prac-
tical purposes. If eq 9 is rewritten as

8 = &conc + P(gdil - gconc) (9,)

it is clear that the last term will make its greatest contri-
bution at very low concentrations and will be damped out
exponentially by the factor P as the concentration is in-
creased. We therefore replace the coefficient of P in eq 9’
by its limiting value, writing

£ = Zcone + g*P

g* = lim (gdil - gconc)
$2—=0

(97)

Putting eq 9" and 12 into eq 1, we may now write the free
enthalpy of mixing as

AG/N,RT = ¢, In ¢, + me‘lcﬁz Ino;, + T (14)
where No = n1 + Z;nim; and

F = ¢1q)2[gconc + g* exp(—>\w¢2)] (15)

It should be noted that these equations define a free en-
thalpy function into which no new adjustable parameters
have been introduced to cope specifically with the transi-
tion from dilute-solution to concentrated-solution behavior.
The term geone can be evaluated from measurements of
various kinds on concentrated solutions, and (as shown
below) the coefficient g* in the perturbation term is sim-
ply related to the second virial coefficient A, which may
be evaluated from osmotic or light-scattering measure-
ments on very dilute solutions. Further, A\w is also pre-
dictable from independently measurable quantities, save
for a possible small adjustment in the factor a. The func-
tion bears no evident relation to those appearing in the
more fundamental theoretical treatments of Fixmani3,14
or Edwards,'5 but essentially the same physical variables
are involved.

The quantity g*, as stated above, can in principle be
obtained from the osmotic second virial coefficient. In the
case of a multicomponent polymer, however, the detail of
information required places great strain on existing data
since the dependence of A; on the entire molecular weight
distribution of the solute is required. In this paper we
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shall be content to give explicit results only for a strictly
binary system. For that case, Aw reduces to Aom1/2, Since
g* is defined to be independent of ¢2, eq 14 and 15 give

AV [0k = (1/2)[1 + (azr/a(ﬁzz)@w] =
(1/2) = x; — (1 + Agm2)g* (16)
where we have used the series representation of geone

from eq 4 and 5. Direct comparison of eq 16 with eq 8
yields

(1 + Am"Dg* = [(1/2) = x,J1 — Ax)] D

In applications to a given binary system, we have the
choice of evaluating g* either (a) by eq 16 directly from
measured values of A3 or (b) by eq 17 from one of the sev-
eral available theoretical expressions for the function h(z).
The x1 needed in both cases is based on data for concen-
trated solutions. The former route needs no further com-
ment. As to the latter, we may remark that at tempera-
tures not too far from 7' = ©, theory gives-18

h(z) = 1 — 2.865z + ... (18)
and the variable z is defined by
z = (5,/4mb) Hm/V VA1 = 2x,)/Na (19)
If these relations are used in eq 17, the result is

(1 + Am¥'Bg* =

5.73(m/V WH0,/4mb?P2[(1/2) — X, }/Na (20
which indicates that g* is positive both above and below
the © temperature, vanishing quadratically at T = 6.

According to eq 14 and 15, the third virial coefficient is
given by

L, 1 #T 1
AV\ o5 = 5[1 + ( )Q5 O] =g-x+

¢y’
AomVH(1 + 2N\mV2)g*  (21)

This expression does not bear comparison with any exist-
ing theoretical relationl? for As, but it agrees with theory
insofar as the contribution from binary segment-segment
interactions, here proportional to g*, vanishes at T = 6.

Binary Stability Limit and Miscibility Gap

In a strictly binary polymer solution, the previous re-
sults reduce to

Z = AG/]V@RT = ¢, In ¢ + mi¢g; In ¢ + g0

(22)

where
g = Geone + [(1/2) — x,J[1 —A2)]T + N7 exp{—Ady)
A = Am!? (23)

We now apply this expression to the calculation of some
spinodal and binodal curves for the binary polystyrene-
cyclohexane system. In an earlier paper it was shown®
that for sufficiently concentrated solutions the experimen-
tal data for this system are well represented by the func-
tion

=a + B(1 — ypy)*
B =08+ 6T
with = —0.1597, v = 0.2365, 3¢ = 0.4987, and 31 =

gCOl’]C
(24)
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111.74K. From standard literature sources?! we have 0z =
0.925 cm3 g-1, V; = 108 ¢cm3 mol-! and b2 = 7.6 X 10-18
cm? mol g1, so that from eq 13 and 19 we find Ao =
0.57a, and

z = 0305[(1/2) = x,Jm'? (25)

According to eq 24, x1 = o + B(1 — v). For the function
h(z) we have a choice of approximate theoretical expres-
sions1? from which we use the familiar ones of Flory,
Krigbaum, and Orofino (FKO (m)), Stockmayer (S), Ku-
rata and Yamakawa (KY), and Casassa and Markovitz
(CM)

FKO(m) h(z) = (1/5.73z) In (1 + 5.732) (26a)
S h(z) = 1/ + 2.8652) (26b)
KY R(z) = 1 — (1 + 3.9032)7°%3/1.8282z  (26¢)
CM h(z) = [1 — exp(—5.732)]/5.732 (26d)

All these forms agree with eq 18 in the neighborhood of
the © temperature, and all give more or less adequate rep-
resentations of second virial coefficients for temperatures
above ©. The first three expressions all lead to infinite
values of h(z) at some temperature below 0, but this ca-
tastrophe is too far from the range of existing data to
cause serious inconvenience. Alternatively, as mentioned
earlier, we might avoid use of an explicit h(z) function
and instead resort to direct extrapolation of observed sec-
ond virial coefficients for substitution in eq 16. For this
purpose, the simple empirical expression presented by Ue-
berreiter and Sotobayashi2? is convenient.

The stability limit or spinodal is defined by the condi-
tion

(32Z/d¢)rp = 0 (27)

which, from eq 22, 23, and 24 yields

(1/¢)) + (1/mg,) = 2a + 251 — 7)(1 - Y$)? +
((1/2) = a = B = V1 - AT + M) X
(2 + 2N — 4Apy — Apiods) eXP(_)\¢2) (28)

This expression displays the concentrated-solution terms
reported earlier,5 but is now amended for dilute-solution
effects by addition of the last term. This term is attenuat-
ed by its exponential factor, becoming insignificant at suf-
ficiently high concentrations.

The loci of the stable two-phase region are specified by
the equilibrium conditions

Aw’ = Aw”
Ap = Au”

(29)

where as before the single prime is for the more dilute
phase. From eq 22-24 we have

Au/RT = 1In ¢, + (1 — m™Np; + E¢2 (30)
mAu/RT = m™ In ¢, — 1 — m™M¢, + &b (3D
where
§ = g — $:0g/0¢, = a + BU =N —v¢)7 +

[(1/2) = a — (1 — y)B]L = @I + M) X
(1 + M@y exp(—Ag,) (32)

(21) J. Brandrup and E. H. Immergut, Ed., “Polymer Handbook,” In-
terscience, New York, N. Y., 1966.

(22) K. Ueberreiter and H. Sotobayashi, J. Polym. Sci.,, Part A, 2, 1257
(1964).
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§ = g+ ¢,08/0¢, = a + B(1 — y¢)t +
[(1/2) = a = (1 — y)B]1 — A1 + A X
(1 = Ao exp(—=Ag,) (33)

Spinodal curves calculated for various h(z) functions,
by the procedure described in the Appendix, are shown in
Figure 1, together with available experimental data. It is
seen that the extended free enthalpy function gives a bet-
ter description of the spinodal data, especially at lower
molecular weights, than a standard function which omits
the dilute-solution term. The choice of h(z) makes some
difference. The CM expression appears to underestimate
the effect, the S and KY expressions are quite useful, but
the FKO(m) function seems to afford the best fit. If the
alternative treatment based on eq 16 and the Ueberreiter-
Sotobayashi2? parameters is used, then the calculated spi-
nodals (not shown in Figure 1) almost coincide with those
for the CM function.

The value of Ao is of some importance, as indicated by
Figure 2. With the KY expression for h(z) the best fit is
attained with Ao =~ (1/2). With the FKO(m) function this
figure could be somewhat higher, though still well below
Ao = 1. These results are in comforting accord with eq 13
for a near unity, and thus support the assertion that the
added dilute-solution perturbation term does not involve
new adjustable parameters. Addition of the new term pro-
duces changes of the correct sign and order of magnitude
in the spinodal which, involving the second derivative of
the free enthalpy, provides a sensitive test for its validity.

Miscibility gaps (binodals) calculated as described in
the Appendix are displayed in Figure 3 for m = 800 and
the CM function for h(z). These results show that a value
of Ao much in excess of unity would give negligible effects
on the boundary of the two-phase region, while a figure
much less than % would produce an unpalatably large
change on the high concentration side of the diagram.

Discussion

Over the concentration range so far studied for the poly-
styrene-cyclohexane system, the dilute-solution effect ap-
pears to become negligible as Mw increases beyond about
5 X 105. At higher molecular weights, dilute-solution ef-
fects would be observed only at lower concentrations. This
is because the ‘“yardstick” A in the exponential damping
function of eq 12 does not depend on molecular weight in
the same way as, for instance, the maximum point of the
spinodal curve.

By virtue of eq 13, A also depends on the unperturbed
dimensions of the polymer. Thus, if all the other parame-
ters remain fixed the dilute-solution effect would be less
visible for polymers with larger unperturbed dimensions
than polystyrene. However, as is seen in eq 19, the unper-
turbed dimensions also affect the parameter z, and it is
therefore not possible to make any detailed statement
without knowledge of the temperature and concentration
dependence of geone. That the unperturbed dimensions
should exert some effect may be qualitatively argued from
the circumstance that the ‘“overlap concentration” 1/Aw
does depend on the unperturbed dimensions whereas the
critical concentration, according to present theories of
concentrated polymer solutions, does not. In general, the
magnitudes found for the polystyrene-cyclohexane system
are thought to be typical, but it would be very valuable to
have data for at least one rather different polymer-solvent
system.

Extension of the present treatment to a general quasibi-
nary system is perfectly feasible in principle, but for its
practical implementation a precise specification of the de-
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Figure 1. Spinodals for three samples of narrow-distribution
polystyrene in cyclohexane. Weight-average molecular weights
My are indicated. Experimental data by light scattering: filled
circles, Scholte;* open squares, Gordon et al.23 The experimental
critical points (dotted circles) are from Koningsveld, Kleintjens,
and Shultz.2¢ Calculated curves, for Ag = (1/2), are from eq 28
with the various h(z) functions of eq 26. The curve marked
“conc’’ corresponds to A(z) = 1; i.e., to complete omission of the
dilute-solution effect.

pendence of Az on molecular weight and molecular weight
distribution is required. Present experimental and theo-
retical knowledge of this dependence is quite limited. Ue-
berreiter and Sotobayashi,?2 for example, suggest that A,
simply depends linearly on mn=1/2 or mw~1/2 but these
forms cannot be correct for arbitrary chain lengths or dis-
tributions, even though they appear to offer a satisfactory
correlation of many existing experimental data. A more
fundamental theoretical attack on the problem is unfortu-
nately still at a relatively early stage of development.17-18

We are thus at present not in a strong position to dis-
cuss critically the distribution-ratio problem raised by the
observations of Breitenbach and Wolf.¢ It is difficult to
separate effects due to approximations in our interpola-
tion function from those due to uncertainties in the basic
thermodynamic treatment of dilute multicomponent poly-
mer solutions. An account of our attempts to deal with
these difficulties is deferred to a later paper.

A brief comment must also be offered on the effects of
long-range correlations in the critical region.?s It is well
known that all treatments based on a continuously differ-
entiable free enthalpy function lead to a parabolic coexis-
tence curve in the immediate vicinity of the critical point,
in contradiction to both experiment and -modern theory,

(23) K. W. Derham, J. Goldsbrough, and M. Gordon, Pure Appl. Chem.,
in press; J. Goldsbrough, Sci. Progr., 60, 281 (1972).

(24) R. Koningsveld, L. A. Kleintjens, and A. R. Shultz, J. Polym. Sci.,
Part A-2, 8, 1261 (1970).

(25) See, for example, H. E, Stanley, “Phase Transitions and Critical Phe-
nomena,” Oxford, Univ Press, Oxford, 1971.
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Figure 2. Spinodals calculated for the same three samples as in
Figure 1, with the KY expression for h(z) and various values of
Xo. Full curve, Ao = (1/2); dashed curve, Ao = 1; dash-dot curve,
Ao — « (conc).

which show the true curve to be flatter. Chu and his co-
workers?6 have offered evidence of such nonclassical be-
havior in the polystyrene-cyclohexane system, and it is
possible that the slightly flatter appearance of the experi-
mental spinodals of Figures 1 and 2 as compared to the
calculated curves can be attributed to this cause. We be-
lieve, however, that the temperature and concentration
range of the nonclassical region is much narrower for poly-
meric systems than for solutions of small molecules, and
that such effects cannot be large enough to account for
the entire “dilute-solution” contribution that we have
treated. We hope to discuss this question more extensively
elsewhere.

Finally, it is interesting historically to recall that Ben-
edict, Webb and Rubin?7? long ago found that insertion of
a Gaussian function of density into their well-known
equation of state afforded an economical representation of
vapor-liquid equilibrium in hydrocarbons and their
mixtures, in superficial resemblance to the present con-
coction for polymer solutions.
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Appendix

Because z is a function of 3(T) (eq 25; x1 = a + (1 —

(26) N. Kuwahara, D. V. Fenby, M. Tamsky, and B. Chu, J. Chem. Phys.,
55, 1140 (1971).

(27) M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys., 8, 344
(1840).
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Figure 3. Calculated miscibility gaps and spinodals in a strictly binary polystyrene-cyclohexane system with m = 800, the CM expres-
sion for h(z), and various indicated values of Ag. Outer (heavy) curves are binodals; inner (light) curves are spinodals; filled circles are

critical points (only two indicated).

v)8), the spinodal expression (28) is implicitly defined in
B(T). Its value, 84, at some fixed ¢2 (= 1 — ¢1) along the
binary spinodal is nevertheless easily found by rewriting
eq 28; thus
B = F|/F, (AD
where
F, = (1/¢1) + (1/m¢>2) - 2a — [(1/2) - 01] X
(1 - h)(l + A)—IFS exp(—>\¢2)
F, =1 — Y201 — vy¢,)% —
1 = A1 + N7UF, exp(—=Agpy)]
F3 = 2 + QA - 4A¢2 + Az(ﬁld)g
h = h(z)
On setting h(z) = 1 in eq Al all dilute solution terms van-
ish and we obtain the exact solution B(T)conc corre-
sponding to the usual concentrated theory spinodal. This

affords a good first approximation to 34 from which 2z and
hence h(z) may be calculated by means of eq 25 and 26,

respectively. Substituting for h(z) in eq Al obtains an im-
proved approximation to 8¢. This recursive procedure
may be continued to yield successively closer approxima-
tions to §» and the spinodal temperature (corresponding
to the value ¢») computed therefrom with eq 24; viz. T =
B1/(8¢ — Bo). In practice only four or five iterations are
required to determine the spinodal temperature to within
0.001°.

To calculate binodals; consider the chemical potential
of each component in the dilute (’) and concentrated ('’)
phases. From eq 30 and 31 it is convenient to define the
functions

fi= Aw” — Ay’ = In (&/"/9)) +

(1= m™ N e — @) + (§7¢"2 = £/¢Y) (A2)
A}Lz” e A/Jz’ =m~ In (¢2“/¢2’) -

(1= mXey = ¢) + &8 = &6 (A3)

For each fixed m and ¢2”” (= 1 — ¢1”’), we seek the corre-
sponding values of T and ¢2” (= 1 — ¢1) which complete

f2
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the definition of two points at the ends of a tie line in a
binodal. To this end we regard f1 = fi(¢2’,T) and f2 =
fa(¢2’, T) and note that the solution is found when the
equilibrium conditions, fi{(¢2’,T) = 0 and fa2(¢2’,T7) = 0
(eq 29), are met.

Combining Newton-Raphson and Gauss-Seidel meth-
ods; if T; and ¢2,;" represent approximations to T and ¢5’,
then closer approximations Ti+1 and ¢2,;+1 are given by

Tivr =T — f1(Ti"¢’2,1')/f1T(T1,¢2.i')
and
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Doiv1’ =

where

¢2,1/ - fz(Ti+1,¢2, i/)/f2¢(Ti+1,¢zi’)

fif =9f,/eT f2 = 8f:/0¢s

From the rather arbitrary starting values, To = 300, and
¢2,0° = 0.005, the values of T and ¢z’ were determined to
sufficient accuracy (0.002 in T and 0.001 in ¢3’) at step i
~ 6 in this recursive routine.

All of the calculations above were performed on a pro-
grammed Hewlett-Packard desk calculator, Model 9810A.

Entanglement Networks of 1,2-Polybutadiene Cross-Linked in
States of Strain. I. Cross-Linking at 0°
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ABSTRACT: Linear 1,2-polybutadiene is cross-linked at 0° (12° above T) by y-irradiation while strained in sim-
ple extension, with extension ratios (\g) from 1.2 to 2.0. After release, the sample retracts to a state of ease (As) at
room temperature. From Ao, As, and Young’s modulus in the state of ease (Es), the molar concentrations of net-
work strands terminated by cross-links (vx) and by trapped entanglements (vn) are calculated by composite net-
work theories of Flory and others. With increasing irradiation time ¢, vx (corrected for free ends) is directly pro-
portional to ¢t and vy attains a constant value. With increasing Ao, vx is constant and vx diminishes somewhat.
Extrapolated to Ao = 1, vy is somewhat smaller (1.2 X 10-¢ mol cm~3) than the concentration of entanglement
strands estimated from viscoelastic measurements on uncross-linked polymer in the plateau zone (ve = 2.5 X
10-4). Young’s modulus was also calculated indirectly from equilibrium swelling in n-heptane. The swelling is

slightly anisotropic, being larger in the direction of extension.

In certain ranges of frequency (or time) and tempera-
ture, the viscoelastic properties of amorphous polymers of
high molecular weight resemble those of cross-linked poly-
mers, as though a temporary network existed, usually at-
tributed to coupling by entanglements.! The concentra-
tion of network strands terminated by entanglements has
been estimated from viscoelastic measurements in the
plateau zone,? but these are not measurements at elastic
equilibrium. To measure the effect of entanglements at
equilibrium, they must be trapped between chemical
cross-links to prevent eventual disentanglement. Concen-
trations of trapped entanglements have been estimated in
several ways,3-8 involving additive contributions from
strands terminated by chemical cross-links and by entan-
glements.

The present work treats systems in which the elastic
effects of strands terminated by chemical cross-links and
by trapped entanglements, instead of being additive, are
in opposition. Their concentrations can in principle be de-
termined without any assumptions of stoichiometric cross-
linking, and the effectiveness of entanglements as a func-
tion of strain and other variables can be investigated. A
preliminary report of such experiments has appeared else-
where.?

(1) J.D.Ferry, Proc. 5th Intern. Congr. Rheol., 1, 3 (1969).

(2) J. D. Ferry, “Viscoelastic Properties of Polymers,” 2nd ed, Wiley, New
York, N. Y., 1970, p 406.

(3) C.G.Mooreand W. F, Watson, J. Polvm. Sci., 19, 237 (1956).

(4) B. Meissner, I. Klier, and 8. Kucharik, JJ. Polym. Sci., Part C, 16, 793
(1967).

(5) N.Steiner, BAM (Bundesanst. Materialprue.) Ber., 5,25 (1971).

(6) N. R. Langley and K. E. Polmanteer, Polym. Prepr., Amer. Chem.
Soc., Div. Polym. Chem., 13, 235 (1972).

(7) O. Kramer, V. Ty, and J. D. Ferry, Proc. Nat. Acad. Sci. U. 8., 69,
2216 (1972).

Theory

When a rubber containing vy (mol ¢m-3) of elastically
effective strands between cross-links which were intro-
duced in the isotropic state is subjected to a substantial
deformation and then a new set of cross-links is intro-
duced to give an additional vs (mol cm—3) of elastically
effective strands, the equilibrium elastic properties can be
described as the sum of two independent networks. The
most general treatment of such composite networks has
been presented by Flory,® who gave the following expres-
sion for the elastic free energy AF.) of the composite net-
work, assuming Gaussian chains

AF./RT = (u /XA + A2 + A2 — 3) + (1/2) %
(>\x:22 + >‘y:22 + A2:22 - 3) ~—(1/2)(”1 + DZ) ln V/VU (1)

where Az, Ay, and A represent the extension ratios rela-
tive to the initial isotropic state; A,., Ay,2, and A, rep-
resent the extension ratios relative to the state in which
the second set of cross-linkages was introduced; V is the
actual volume; Vy is a reference volume. After release of
the stress, the sample assumes a state of ease in which the
free energy is at a minimum and the force due to the net-
work introduced in the isotropic state is equal to and op-
poses the force due to the network introduced in the
strained state. From the strain in the state of ease the rel-
ative concentrations of elastically effective strands intro-
duced in the strained and isotropic states, i.e., v2/v1, can
be calculated. The ideal composite network is isotropic in
its elastic properties, taken relative to the state of ease.

If an uncross-linked polymer of high molecular weight

(8) P.J.Flory, Trans. Faraday Soc., 56, 722 (1960).



